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The Differences of Pseudorandom and Truly

Random Numbers

To what extent can random numbers be used in place of pseudorandom numbers?
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Introduction:

Random numbers are essential to modern life and have a wide range of applications.
There are two categories of randomness: truly random and pseudorandom. A truly random
number (TRN) is a random number created from random events. A pseudorandom number
(PRN) is a random number created algorithmically. Each type of random number is more
suited for some applications of random numbers than others, some of which are essential to

modern life.

Since PRNs are created using algorithms, they are very easy for computers to create.
Computers create PRNs using algorithms known as PRN generators. The numbers produced
by these algorithms are not truly random since TRN cannot be predicted and algorithms are
perfectly predictable. Despite this, PRN generators attempt to create numbers that appear to

be truly random.

TRN, on the other hand, require observing quantum events or chaotic systems.
Quantum events are events between quantum particles and are probabilistic. Chaotic systems
are systems that are very sensitive to changes and initial conditions. Under the current
understanding of physics, quantum events and chaotic systems cannot be predicted and can,

therefore, be used to create TRNs.

This investigation will explore what randomness is and what it means for numbers to
be random. It will also briefly explain why random numbers can be extracted from cyanotic
systems and radioactive decay. The limitations of PRNs will be shown using the Middle
Square Method. A more suitable PRN generator, the Messene Twister, will also be analyzed
to highlight the efficiency and practicality of PRN generators. Three sources of TRNs will

also be considered, two from radioactive decay and one from a chaotic system. One of the
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TRN generators that use radioactive decay was experimentally created to show how TRNs
can be generated in practice. The several random number sources will also be analyzed based
on the several characteristics of random numbers. PRN and TRN generators will be compared
to highlight each’s place in modern society, with reference to three applications: encryption,

simulations and video games.
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Randomness:

Random numbers have a few essential characteristics. Firstly, they are independent of
each other, rolling a six on a fair die will not affect the next roll. Secondly, random numbers in
this context should be equally probable just like when you flip a fair coin. To be truly random,
they should also not be predictable. PRNs cannot satisfy this expectation of random numbers

but should satisfy the other two conditions.

Before random number generators can be properly analyzed, a way to decide whether
a set of numbers meets the requirements of independence and equal probability. Furthermore,
a way to test the practicality of a set of random numbers is also necessary. Randomness,
unfortunately, cannot ever truly be tested because “It is impossible to prove that a given
sequence is random” (Dewdney 53). However, the ability to prove a series of numbers is
random is not necessary, compelling evidence can still be acquired in favor of a series of

numbers being random.

To test if each possible number is occurring at the correct rate the average and
Shannon’s entropy (entropy) can be used. The average of a series of random numbers is
expected to be about equal to the average of all the possible numbers. Entropy is the measure

of how much information each number in a series of numbers contains and is given by:

m
H=— Z pilog:(p:)
i=0

Equation 1 (Borda 11)

Where m is how many different numbers are possible, p; is how often the i*" possible number
occurs, and /A is the number of bits of information each number has, or the entropy of each

number. “Entropy is maximized when the [numbers] have equal probabilities” (Borda 12).
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Since this is expected of random number generators, /7 should be about the number of bits in
each random number. For example, imagine two different random number generators. Both
produce 2-bit random numbers between zero and three. Generator 1 produces good random
numbers and Generator 2 produces poor random numbers. A set of sixteen random numbers is
produced by each. Set 1 and Set 2 are generated by Generator 1 and Generator 2 respectively.

Table 1 shows how often each number occurs in each set.

Set 2
Number Set 1 Frequency Set 2 Frequency
0 25% 31.25%
1 25% 18.75%
2 25% 12.5%
3 25% 37.5%
Table 1

Using the information from Table 1, the entropy of Set 1 and Set 2 can be calculated. The
entropy of Set 1 is 2.00 bits while and the entropy for Set 2 is only about 1.89 bits. Set 1 appears
to be random because its entropy is equal to the number of bits in each random number. Set 2
does not appear to be random because its entropy is less than the number of bits in each random

number.

To test whether random numbers in a series are independent of each other the serial
correlation of the series can be analyzed. Serial correlation “measures the extent to which each

byte in the file depends upon the previous byte” (Walker, “A Pseudorandom Number Sequence
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Test Program.”). The serial correlation of a set of random numbers is expected to be about zero

since random numbers should have no influence over each other.

Lastly, to test the practicality of a series of random numbers a Monte-Carlo simulation
can be run. Monte-Carlo simulations are “numerical experimentation technique[s] to obtain the
statistics of the output variables of a system computational model” (Cruse 123). These types of
simulations should produce accurate results if it is run using random numbers. Therefore,

accurate results from Monte Carlo simulations suggest randomness.

To collect these statistics and run a Monte Carlo simulation on the random number
samples produced by each source a utility named Ent (Walker, Ent) was used. Ent calculates
the average, entropy, and serial correlation of a series of random numbers and runs a Monte-
Carlo simulation to approximate Pi. Ent treats each sample of random numbers as a source of
eight-bit unsigned random numbers ranging from zero to 255. Each metric and its expected

value are listed in Table 2.

Statistic Expected Value
Shannon’s Entropy 8.0
Serial Correlation 0.0
Average 127.5
Monte Carlo Pi 3.1416
Table 2

These tests are not proof but evidence and can produce false positives and negatives. However,
the probability that a set of random numbers would not satisfy these conditions is so small that
for pragmatic purposes, the possibility of these tests being incorrect can be safely ignored, and
for the remainder of this investigation will be. For all but the experimentally produced random

numbers, the analysis was conducted with four KiB of random numbers.
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True Randomness:

TRNs must be extracted from random events, for example flipping a coin. However,
flipping a bunch of coins every time you need a random number is far too tedious and takes far
too long to be practical. For this reason, physical processes are exploited. One physical process
that can be used is radioactive decay. Radioactive decay in a random physical event that occurs
in unstable atomic nuclei and is determined by quantum mechanics ("Radioactivity").
Radioactive substances tend to obey a half-life meaning that half of the remaining radioactive
atoms usually decay every fixed length of time (Wolke). Though we can calculate how long it
should take before each particle is emitted from a radioactive substance using its half-life, each
atomic nucleus is independent of the others and has a certain probability of decaying. Because
of this, the emission of radioactive particles cannot be predicted. The randomness of when
radiation partials will be emitted from radioactive substances can be used to create TRNs.
TRNSs can also be generated by measuring changes in a chaotic system such as atmospheric
noise. Both radioactive decay and atmospheric noise as sources of random numbers will be
explored in this investigation. Websites that provide TRN samples used in this investigation
will be assumed not to have tampered with the random number to ensure good statistical

analysis.
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Pseudo-Randomness:

PRN generators attempt to mimic truly random sources algorithmically. PRN
generators use states to create random numbers. States are sets of values for all the variables in
a PRN generator (PRNG). Each state can produce one or many random numbers depending on
which algorithm is being used. If more PRNs are needed and the state has produced all its
PRNs, a function is applied on the current state to generate the next. PRNGs need a seed to
start so that they can create an initial state an being producing random numbers. The same seed
and algorithm will always produce the same set of random numbers because computers are
deterministic. The seed of a PRNG is usually chosen based on the time but can determine in
other ways. However, PRNs have one major flaw: they always enter a loop. Looping occurs
because the current state determines the next state. Since there are a finite number of possible
states for a PRNG to be in, it will eventually return to a previous state. This results in indefinite

looping and can be visualized in Figure 1.

Figure 1

Starting at any number and following the arrows will result in looping between one, four, and
three. With finitely many possible states and drawing only one arrow from each state, there is

no way to avoid looping. The quantity of random numbers produced by a PRNG before it loops
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is called the period of that PRNG. The longer the period is the more random numbers it can
generate before looping. After a PRNG beings to loop, it should no longer be used. However
pseudorandom number generators are much faster than TRN generators because computers are

fast at performing calculations.
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The Middle Square Method:

The Middle Square Method is a very simple PRNG that highlights the looping problem
in PRNGs. In the Middle Square Method, each state is also a random number. The next state
and random number is calculated by squaring the current state, removing extra digits or adding
zeros on the left until it is uniform length, and then extracting the middle digits. In this
algorithm zero is followed by itself, meaning that if the algorithm produces a zero, it will only
produce zeros thereafter. This problem is worsened by the fact that zeros are a frequent output
of this PRNG. When a current state is a small number or power of ten, the next state is usually
a zero. As a result, this algorithm often enters a loop of zeros. Because of this tendency,
collecting four KiB of random numbers without collecting almost exclusively zeros is not
possible without modifying the algorithm. In order to analyze the Middle Square Method best,
whenever it entered a loop it was reset and given a new seed. The statistics of a four KiB sample

produced using the modified Middle Square Method can be seen in Table 3.

Statistic Value Expected Value Error

Bytes 16384 n/a n/a

Shannon’s Entropy | 7.4045 8.0000 7.4437%

Serial Correlation 0.0259 0.0000 n/a

Average 125.1362 127.5000 1.8539%

Monte Carlo Pi 3.0139 3.1416 4.0640%
Table 3

There is not strong evidence of randomness for this algorithm. Due to the large sample size,
smaller errors would be expected of random numbers. The entropy of the random numbers
produced by this algorithm is particularly poor suggesting some numbers occurred too often

and some numbers did not occur often enough. This problem can also be observed in Figure 2.
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Figure 2

Certain numbers occurred at much higher frequencies than expected while others occurred at
far lower frequencies than expected. Because of this, there is no evidence that this sample of
numbers is random. The Middle Square Method is an excellent example of how not to generate

a random number and clearly outlines the key problems with PRN. While other PRNGs can

The Middle Square Method
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correct the statistical problems, no pseudorandom number can avoid looping.
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Random.org is a service that measures changes in the amplitude of atmospheric noise

to produce random bits. The random numbers produced by random.org are based on chaos, not

quantum mechanics. Despite this, it is still a source of TRNs since chaotic systems are

unpredictable without perfect knowledge, which is impossible in this case. Perfect information

for atmospheric noise includes the location and speed of every air particle (Haahr). The

Heisenberg Uncertainty Principle states that this is impossible to know both the speed and

location of a particle, making atmospheric noise unpredictable. However, unpredictability

alone is not enough, each bit should have an equal chance of being a one or zero. To test this,

the relevant metrics of a four KiB sample of random numbers from Random.org can be seen in

Table 4.
Statistic Value Expected Value Error
Bytes 16384 n/a n/a
Shannon’s Entropy | 7.9899 8.0000 0.1258%
Serial Correlation 0.0032 0.0000 n/a
Average 127.6027 127.5000 0.0805%
Monte Carlo Pi 3.1121 3.1416 0.9392%

Table 4

There is clear evidence of randomness in the numbers produced by Random.org. The errors

are very low as expected due to the large sample size. The serial correlation is also very low

implying that the random numbers do not affect each other. The high entropy of the sample

implies that each number occurred at about the same rate. This is further supported by Figure

3.
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Figure 3

All possible numbers occur about as often as each other. There are no excessively high or low
frequencies as suggested by the low value of entropy. There also does not appear to be any
patterns on the frequency chart. Therefore, there is evidence that the sample is truly random.
However, this truly random number generator (TRNG) cannot produce random numbers as

quickly as PRNGs because physical measurements must be made to produce each bit.
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The Mersenne Twister is a PRNG that is more complex, and resource intensive than

the Middle Square Method. It is currently the default source of random numbers in many

programming languages, for example, Ruby (Britt). In the Mersenne Twister, a signal state

produces many random numbers. Like the Middle Square Method, if the Mersenne Twister

ever returns to a previous state then it enters a loop. However, it takes much longer for the

Mersenne Twister to enter a loop. It can also safely provide zeros as random numbers. The

statistics of a four KiB sample produced using the Mersenne Twister can be seen in Table 5.

Statistic Value Expected Value Error
Bytes 16384 n/a n/a
Shannon’s Entropy | 7.9897 8.0000 0.1284%
Serial Correlation -0.0017 0.0000 n/a
Average 128.2832 127.5000 0.6143%
Monte Carlo Pi 3.0711 3.1416 2.2351%

Table 5

There is some evidence of randomness for the numbers produced by the Messene Twister. They

are high in entropy and has a low serial correlation. However, their average differs more from

the expected value than the numbers produced by Random.org. Furthermore, the results of the

Monte-Carlo simulation show that these numbers are not as suitable for simulations as the

numbers produced by Random.org.
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Figure 4

Figure 4 shows that there are no large spikes and that there is appropriate variation in frequency
similar to that of Random.org. The Messene Twister appears provides good quality random

numbers more efficient than TRNG, though it does not produce accurate simulations.
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HotBits like Random.org is a service that provides random numbers over the internet.

HotBits however, uses radioactive decay to generate random numbers. They use Casium-137

as a radioactive source (Walker, “Tunnelling to Freedom™). HotBits uses four consecutive

emissions to create one random bit. The time between the first two emissions and the second

two emissions are compared to each other. Depending on which time span is longer, a one or

a zero is recorded. HotBits alternate between which time span needs to be larger to prevent a

bias in their random numbers since the second-time span is expected to take slightly longer

because there are two fewer atoms capable of decaying. The statistics of a four KiB sample

from HotBits can be seen in Table 6.

Statistic Value Expected Value Error

Bytes 16384 n/a n/a

Shannon’s Entropy | 7.9896 8.0000 0.1305%

Serial Correlation -0.0008 0.0000 n/a

Average 127.6028 127.5000 0.0806%

Monte Carlo Pi 3.1399 3.1416 0.0530%
Table 6

There is strong evidence of randomness from this source. The entropy is very high, the

serial correlation is very low, the average is close to the expected value and the approximation

of Pi is very accurate. The statistics calculated for this sample are very similar to random.org.

The low entropy is reflected in Figure 5.
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There are no frequencies that are significantly higher or lower than the expected frequency.
There is clear evidence of randomness given the statistics and frequency graph. The similarities
between the statistics and graphs of the samples produced by HotBits and Random.org suggest

that they both produced the same type of numbers: TRNSs.
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The Experiment:

To test random numbers generation in practice, radioactive decay was used to produce
random bits. The method used was similar to that of HotBits with a few small changes. Firstly,
instead of using four emissions to produce a random bit, three were used for the first bit and
two for all successive bits. This efficiency boost is possible since HotBits does not use the time
span between the second and third emissions or the time spans between each set of four
emissions. Secondly, a Geiger counter was used along with an Arduino to collect the time
stamps for later processing instead of being processed as the emissions were detected. Lastly,
due to a limitation in the Geiger counter, only 9999 emissions could be recorded without human

intervention. Figure 6 shows the arrangement of the different devices in the recording

apparatus.
logging device (laptop) Arduino
sound detector
Geiger Counter D)) O

beep Radioactive

Sample
]
—! beta particles

Geiger—Mdiller Tube

Figure 6

For safety reasons, this experiment could not be conducted during the day when the classroom
was in use. These limitations meant that 4 KiB of random numbers could not be produced, only
0.63 KiB. This has serious consequences on the statistics shown in Table 7. In order to

determine if these values are acceptable, the Ent was recursively run on the sample from
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HotBits to determine the value of each metric at all possible sample size. Figures 8 through 11
show the effect of sample size on the errors in each metric using the HotBits sample. In Figures
8 through 11 the measurements made on the experimentally generated sample are also plotted.

Figure 7 shows a graph of the frequencies of each number in the experimentally generated

sample.
Statistic Value Expected Value Error
Bytes 648 n/a n/a
Shannon’s Entropy | 7.6993 8.0 3.7581%
Serial Correlation -0.0173 0.0 n/a
Average 132.3534 127.5 3.8066%
Monte Carlo Pi 3.1852 3.1416 1.3876%
Table 7
Geiger Counter Experiment
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There is some evidence for the sample produced experimentally being random. Every metric
except the average is acceptable when compared to HotBits with the same sample size. The
average is unusually high and can be visualized in Figure 9. However, there are not enough
numbers to determine if there is serious bias or if it just occurred by chance. Due to the nature
of random numbers, it is impossible to know. However, there is some evidence in favor of
randomness that should not be ignored. A larger sample size would be needed to solidify a

compelling case for or against randomness.
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Analysis:

There is evidence that TRNGs are statistically superior to PRNGs. However, PRNs can
be generated much more efficiently than TRNs. Also, PRNs, unlike TRNs, can be re-generated
using the same seed and algorithm. Depending on the application this can be a feature or a
major flaw. Deciding when to use which type of random numbers to use in applications across

the world is very important to our daily lives.

Encryption plays a huge role all over the world, without it people could not authenticate
themselves, protect important information, or issue and validate digital signatures. Encryption,
however, only works when each set of keys is unique to those using it. To ensure someone else
does not guess a key, random numbers are essential. PRNs introduce weaknesses into
encryption since their behavior is easy to predict. For this reason, cryptographically secure
PRNG is used for generating encryption keys. However, this still leaves one weakness, seeds
are usually just sixty-four bits and encryption keys are usually much larger. It is therefore
usually easier to guess the seed of a cryptographically secure random number generator than it
is to guess the key itself. Since the strength of encryption lies in the difficulty of guessing the
key, PRNGs weaken encryption. For most applications, this weakness is acceptable since large-
scale attacks are not expected, and the seed is still difficult to guess. However, for critical
applications or applications expected to be heavily attacked, truly random numbers should be

used to maximize security.

Simulations are another application of random numbers. Atmospheric simulations, for
example, require vast quantities of random numbers. PRNs are a seemingly better choice given
their efficiency, and the large number needed. However, the looping problem with PRNGs can
be problematic. Furthermore, the PRNGs produced significantly worse results from the Monte

Carlo simulation. TRNs appear to produce more accurate simulations. On the other hand, using
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PRNs allows simulations to be repeated easily by recording just the seed instead of all of the
random numbers outputted by a TRNG. A PRNG with a sufficiently long period may be more
favorable depending on whether repeating the simulation will be necessary, however, it is
important to ensure that the PRNG has a long period. If a PRNG is used for simulations and
the period is too short, then the simulation will not provide good results. The use of TRN,
however, could make simulations more accurate. Therefore, deciding which type of random

numbers to use in simulations should be based on whether speed or accuracy is more important.

Video games, however, require far fewer random numbers. Since TRNs require special
hardware and take longer to generate, PRNs are cheaper and more efficient making them the
best candidate for video games. Furthermore, since the seed can be used to reproduce the series
of random numbers, unique situations and levels can all be replicated by just using the seed.
This allows the authors of the game to easily reproduce errors. TRNs, on the other hand, would
take longer and could not be easily shared. Furthermore, unlike with encryption secrecy is often
not an important feature. Algorithms like the Mersenne Twister are the best choice for video

games.

There were several flaws in this investigation. The most significate flaw was the
inability to collect four KiB of random numbers from the experimental source. The comparison
of the error in HotBits at cach sample size revealed that the error in average was higher than
expected casting some doubt on to the quality of the random number produced. Furthermore,
the need to detect the beeping sound from the Geiger Counter introduced the potential for
missed beeps and therefore a bias in the random numbers. Another key flaw is that either
HotBits or Random.org or both could have altered their random numbers to ensure they
produced good random numbers. This could be the reason that each of the truly random sources

had performed well on each statistic instead of the randomness of the source.

3 Extended essay 25



b

Extended essay

Computer science: Example B

Conclusion:

Random numbers are essential to all modern forms of encryption, can be used to
simulate complex systems, and are used in many applications such as video games. The issue
of using TRNs or PRNs is one of global importance. While sometimes it is a matter of
efficiency, practicality, or precision, other times it can be the difference between a secure

transaction and bankruptcy.

The statistical analysis of the random samples from pseudorandom sources and truly
random sources provides evidence that seemingly random behavior can be algorithmically
generated. An insight into how they are generated however reveals that they should not be used
in some applications due to their predictability and periodic nature. PRNs, however, are

universal and do not require special hardware.

The statistical analysis of TRNs is evidence that chaotic system and quantum events
are both good sources of TRNs. The experimentally produced random numbers sample was
not large enough to make a compelling case for randomness, however, it does warrant further
investigation with a larger sample size. In addition, it shows that an alternative method could

potentially double the quantity of random bits produced by HotBits.

TRNs are inefficient, non-deterministic, and do not loop. PRNs, on the other hand, are
efficient, deterministic, and always loop. Which type of random numbers is best depends on
which features are most important to an application. Using the correct types of random numbers
can allow games include introduce unpredictable behavior, make simulations either more

accurate or quicker, and can even make encryption safer.
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Appendix

Appendix A - the first 256 bytes produced using the middle square method displayed in
hexadecimal

44 49 T7a 99 2c 37 ad a4 81 2a 94 04 f4 23 3¢ bl
02 66 e6 81l ea dl e2 78 20 c5 cf ef 8c c4 80 ¢2
be 3e f9 c8 8c 54 04 a4 d4 34 04 77 2e 29 Tb 54
83 80 b5 4e 3c 24 0c 01 00 00 b9 08 9%9a 71 42 08
3a dd 42 95 le a9 7d Oc e4 a9 7a a6 13 £4 53 d4
11 62 99 06 70 4a 8d 24 fl1 a2 69 ca 41 06 61 7c
44 14 f4 d4 34 04 a4 d4 3c bl 02 66 e6 81 ea dl
e2 78 20 ¢c5 cf ef 8c c4 80 c2 be 3e £9 c8 8c 54
04 a4 d4 34 04 79 03 ac 44 86 b6 b0 77 9e 59 a6
e0 00 Oc f6 61 06 d3 7e 28 2a ce 09 fa a3 f0 40
£f5 18 05 00 00 a0 50 32 21 %e 6b ee f9 06 70 4a
8d 24 f1 a2 69 ca 41 06 61 7c 44 14 f£4 d4 34 04
a4 d4 6c 31 d2 30 38 40 5¢ 43 7e 99 a6 e0 00 Oc
fo 61 06 d3 7e 28 2a ce 09 fa a3 f0 40 £5 18 05
00 00 ed fd ae 59 8c 73 81 ba le f9 ef 98 4f 59
f0 80 5¢ 87 33 23 5¢ 71 18 50 d7 Qe 2c¢ 57 b5 22

Appendix B - Example output from Ent produced using the random numbers created using
the middle square method

File-bytes Entropy Chi-square Mean Monte-Carlo-Pi Serial-Correlation
16384  7.404508 17564.9375 125.13623 3.013919 0.025901
Value Occurrences Fraction
231 0.014099
24 0.001465
97 0.00592
65 0.003967
421  0.025696
47  0.002869

kR W N = O
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